12SD: Reverse Engineering Sequence Diagrams

from Enterprise Java Beans with Interceptors®

S. Roubtsov!T A. Serebrenik! A. Mazoyer?
M.G.J. van den Brand! E. Roubtsova?

'Eindhoven University of Technology,

POB 513, 5600 MB Eindhoven, The Netherlands
{s.roubtsov, a.serebrenik, m.g.j.v.d.brand }@tue.nl
2France Labs CICA
2229, route des Crétes 06560 Valbonne, France
aurelien.mazoyer@francelabs.com
30pen University of the Netherlands
POB 2960, 6401DL Heerlen, The Netherlands

ella.roubtsova@ieee.org

Abstract

An Enterprise JavaBeans (EJB) interceptor is a software mechanism
that provides for introducing behaviour implemented as separate code into

the execution of a Java application. In this way EJB interceptors provide

*This paper is a postprint of a paper submitted to and accepted for publication in IET
Software and is subject to Institution of Engineering and Technology Copyright. The copy of

record is available at IET Digital Library
TThe author cordially thanks Laboratory for Quality Software (LaQuSo) for making this

research possible.
fThis research has been conducted during the third author’s stay at Eindhoven University

of Technology. During this period he has been supported by the ERASMUS scholarship.

a clear separation of the core functionality of the bean and other concerns,
such as logging or performance analysis. Despite the beauty of the idea
behind the interceptors, developing, testing and managing dependencies
introduced by the interceptors are considered to be daunting tasks. For
example, the developers can specify interceptors at multiple locations and
by multiple means. However, different locations and specification means
influence the order of the interceptor invocation, which is governed by
more than fifteen different intertwined rules defined in the EJB standard.

To facilitate development of EJB applications we have designed 12SD,
Interceptors to Sequence Diagrams, a tool for reverse engineering EJB
applications with interceptors to UML sequence diagrams. 12SD provides
the developer with a visual feedback and can be used by quality managers

to obtain insights in the ways interceptors are used in their project.

1 Introduction

Maintaining software is similar to renovating a house: while rebuilding a house
one has to understand the location of the pipelines connecting different rooms,
software maintenance requires understanding dependencies between different
software components. While traditional mechanisms implementing dependen-
cies, such as method calls, are well understood, this is not the case for such
mechanisms as interceptors [1,.2, 3, 4]. Interceptors, being a restricted form of
aspect-oriented-programming (AOP), provide means to dynamically introduce
behaviour implemented as separate code into the execution of an application.
Rather than implementing, for instance, such typical cross-cutting concerns as
logging, access control or exception handling as the part of the system core
functionality, one can implement them as separate modules and use intercep-
tors to introduce them into the execution of the core application. Many cur-
rently available Java frameworks [5, 6] exploit interceptors to extend Enterprise
JavaBeans™ (EJB) with AOP features.

Both the currently available Java frameworks [5, 6] and the EJB stan-
dard [2, 3, 4] provide multiple ways of specifying interceptors. Business method
interceptors are invoked when a certain method is called, life cycle callback in-
terceptors are invoked when a certain event occurs such as an object creation,
and timeout method interceptors are invoked by the EJB Timeout service. The
developer can decide to specify the interceptors using XML files, known as de-
ployment descriptors, and/or Java annotations; with respect to a bean class
and/or to a method; in a separate class, as part of the bean class itself, in a
superclass or in an injected bean. For instance, if the developer is interested in
logging all invocations of methods of a certain class, she should specify a busi-
ness method interceptor on the class level, using either a deployment descriptor
or a Java annotation. In the presence of multiple interceptors the system be-

haviour depends on whether business method interceptors, life cycle callback
interceptors or both kinds of interceptors are involved, in what way they are
specified, at which level and location. Continuing the running example, as-
sume that in addition to logging, the developer intends to measure the time
spent on executing a certain method. If time measurement is implemented as a
method level interceptor, by default the logging interceptor will be called first,
and then the time measurement will be performed. Should the developer de-
sire to include logging time in the time being measured, she should overrule
this default strategy by explicitly specifying the invocation order in the deploy-
ment descriptor. For business method interceptors the EJB standard specifies
nine different rules governing the order of interceptor invocation, for life cy-
cle callback interceptors—seven. Hence, while EJB interceptors provide the
developers with a high degree of flexibility, the associated complexity of depen-
dencies introduced by means of interceptors make managing EJB applications
more difficult [7]. Developing such applications is associated with longer peri-
ods and higher costs [8], and the developers have been reported to struggle with
configuring and debugging such applications [8].

We aim at supporting the aforementioned development process by facilitat-
ing understanding, and therefore, maintenance of EJB applications with inter-
ceptors. We choose to derive UML sequence diagrams from EJB applications
with interceptors. UML sequence diagrams are a part of the industrial de facto
standard and are supported by multiplicity of development tools. They have
also been shown to be beneficial for program comprehension [9]. Since intercep-
tor invocation is essentially sequential and data independent, it is specifically
well suited for being portrayed by UML sequence diagrams.

The main contribution of this paper consists, therefore, in presenting a tool
for reverse engineering UML sequence diagrams from EJB applications with
interceptors. The tool is called 12SD, Interceptors to Sequence Diagrams and
is available from http://www.laquso.com/tools/. Building upon the algo-
rithm for business method interceptors presented in our previous work [10],
[2SD targets two kinds of users: software developers and quality assessors. To
assist the developers, 12SD should readily provide feedback during the software
development. Since numerous software developers spend their workday in an
integrated development environment (IDE) [11], I12SD should be integrated in
an IDE. Moreover, 12SD should be applicable to incomplete programs, as pro-
grams under development are often incomplete. To meet these requirements we
opt for a static analysis technique and integrate 12SD in NetBeans. To support
the quality assessors, 125D should be able to run as a stand-alone application
and produce plain text descriptions of sequence diagrams, providing for further
diagram processing, e.g., metrics calculation [12]. Hence, we also designed a
stand-alone version of 12SD.

The remainder of the paper is organized as follows. After a brief discussion
of EJB interceptors in Section 2, we discuss the design of 12SD in Section 3.
Section 4 discusses application of 12SD in three use cases related to software
development and quality assessment. To assist in the latter task, Section 5
presents an empirical study of interceptors’ use in practice. We review the
related work in Section 6, and finally conclude in Section 7.

2 EJB Interceptors

In this section we present a brief overview of EJB interceptors following the EJB
3.0 [2] and the EJB 3.1 standards [3, 4].! The EJB 3.0 standard distinguishes be-
tween life cycle callback interceptors, interceptors invoked when objects are, e.g.,
created or destroyed, and business method interceptors invoked with a business
method invocation. The EJB 3.1 standard adds timeout method interceptors,
that intercept timeout methods invoked by the EJB Timeout service.

2.1 EJB Callback Methods

Similarly to traditional objects’ life cycle of a Java bean instance starts with the
bean instance being created and ends with the bean instance being destroyed.
Creation and destruction events can be intercepted allowing the developer, e.g.,
to allocate and release resources when beans instances are constructed and de-
stroyed. To achieve this a @PostConstruct annotation can be added to methods
that allocate resources and a @PreDestroy annotation to methods that release
them. It is also possible to specify <post-construct> and <pre-destroy> tags in
the deployment descriptor XML file.

Furthermore, one usually distinguishes between stateful beans and stateless
beans [13]. Stateful beans record the so-called conversational state, “remem-
bering” the results of previous exchanges of information between the client and
the bean. Stateless beans do not record the conversational state. Absence of
state information in stateless beans improves system performance as it becomes
possible to reuse bean instances for different clients using pooling [13]. Stateful
beans, however, cannot be reused as they need to save client-specific conversa-
tional state. This also means that stateful session bean instances with multiple
concurrent clients can have asignificant memory footprint. In order to alleviate
this problem, the EJB/container removes idle bean instances from time to time
from the memory, serializes them and places them in a temporal storage. This
process is‘’known as passivation. Should a passivated bean instance be required
by a client, it has first to be activated, i.e., reloaded to the memory. Hence,
in addition to creation and destruction events occurring in life cycles of both
stateful and stateless beans, life cycle of stateful bean also has passivation and
activation events, that can be intercepted as well. Thus, similarly to @Post-
Construct and @PreDestroy annotations (or, equivalently <post-construct> and
<pre-destroy> tags), stateful beans can be annotated with @PostActivate and
OPrePassivate (or, equivalently <post-activate> and <pre-passivate> tags).

Callback methods may be associated with multiple annotations: e.g., a
method annotated with @PostConstruct and @PostActivate will be invoked when-
ever the bean instance is created or activated. A given class may, however, have
no more than one life cycle callback method for the same life cycle event.

1The next version of the EJB standard, EJB 3.2, also known as JSR-345, is being prepared

at the time of writing but is yet to be made public.

2.2 EJB Timeout Methods

Many business work flows depend on time: certain activities should happen
on a certain date, should be repeated every month or should not take longer
than the specified amount of time. To support this behaviour EJB 3.1 intro-
duced the timer service [3]. Using this service developers can create timers such
that when a timer expires, the container calls a timeout method of the bean’s
implementation class.

EJB distinguishes between timers created programmatically and automati-
cally. For programmatically created timers, timer creation is explicitly imple-
mented in the source code. The corresponding timeout method may be a method
that is annotated with the @ Timeout annotation or the <timeout-method> in the
deployment descriptor, or the bean may implement the javax.ejb. TimedObject
interface. This interface has a single method called ejbTimeout. Every bean can
have only one programmatic timer.

For automatically created timers, timer creation occurs when a specified mo-
ment of time arrives. For instance, the following annotation requires the con-
tainer to call a timeout method on Mondays: @Schedule(dayOfWeek="Mon").
In general, a timeout method for an automatically created timer may be a
method that is annotated with annotations @Schedule or @Schedules or tags
<schedule> or <schedules>. Beans may have multiple automatic timers, corre-
sponding, e.g., to timeouts that should occur with different frequencies during
the working days and during weekends.

Both for programmatically and automatically ‘created timers, the timeout
methods should return void, accept. a javax.ejb.Timer object as the only param-
eter and may not throw application exceptions.

2.3 EJB Interceptors

Business method interceptors, known as method interceptors in [4], are invoked
prior to the beginning of a business method execution, and may resume after
its completion, e.g., to inspect the business method return value or exceptions
thrown. Annotation @Interceptors allows the developer to indicate which classes
should be consulted to determine the interceptors for a given method, or all
methods of a given class. Each class implementing a business method interceptor
should have exactly one method annotated with @AroundInvoke or associated
with an <around-invoke> tag: this method is the interceptor entry point, it
will be invoked when the interceptor should be invoked. Due to this reason
business method interceptors are also known as Aroundlnvoke-interceptors [14].
The entry point can be also specified in the deployment descriptor using the
<around-invoke> tag.

With life cycle callback interceptors developers can isolate functionality into
a class and invoke it when a life cycle event is triggered. Inside these classes,
methods that should be invoked are identified by means of annotations or tags
discussed in Section 2.1. In a similar way, developers can intercept calls to
the timeout methods by means of timeout method interceptors: methods with
the @AroundTimeout annotation or <around-timeout> tag will be invoked before
timeout methods. Similarly to around-invoke methods, each class implementing
a timeout method interceptor should have exactly one method annotated with

public class ClassInterceptor {

Q@PostConstruct

private void interceptorPostConstruct(InvocationContext ic) {
try {

ic.proceed();

} catch (Exception ex) { /* ... %/ }

}

Q@AroundInvoke

protected Object interceptorAroundInvoke(InvocationContext ic) {
return ic.proceed();

}

Q@AroundTimeout

protected Object interceptorAroundTimeout(InvocationContext ic) {

return ic.proceed();

Figure 1: Example of a life cycle callback interceptor, a business method inter-

ceptor and a timeout method interceptor (cf. [57]).

©AroundTimeout or associated with an <around-timeout> tag.
Figure 1 shows how the three kinds of interceptors can be defined within one
class.

2.4 Invocation Order of Interceptors

The EJB specifications [2, 3, 4] provide the developer with multiple means of
specifying interceptors. The developer can decide to specify the interceptors
using deployment descriptor XML file ejb-jar.xml and/or Java annotations; in
a separate class, as part of the bean class itself, in a superclass or in an in-
jected bean; at the default level, the bean class level, the level of all methods
with the same name within a class or the method level. As specified in the
invocation rules of EJB [2, 4], should multiple interceptors be present, all these
specification options influence the order of their invocation. Furthermore, EJB
3.0 provides mechanisms to exclude invocation of some interceptors: e.g., if a
business method is annotated with ©@ExcludeClassInterceptors, interceptors de-
fined on the class level and applicable to all methods of the class of the business
method should not be called.

For each kind of interceptors the EJB standards provide a set of rules govern-
ing the order of interceptors invocation. Moreover, different kinds of interceptors
can be defined on the same class. To illustrate complexity of the rules determin-
ing the invocation order, in Figure 2 we quote the business method interceptors
rules [4].

1. Default interceptors, if any, are invoked first. Default interceptors can only be specified
in the deployment descriptor. Default interceptors are invoked in the order of their

specification in the deployment descriptor.

2. If there are any interceptor classes associated with the target class using the QInter-
ceptors annotation, the interceptor methods defined by those interceptor classes are

invoked before any interceptor methods defined on the target class itself.

3. The around-invoke methods defined on those interceptor classes are invoked in the same

order as the specification of the interceptor classes in the @Interceptors annotation.

4. If an interceptor class itself has superclasses, the interceptor methods defined by the
interceptor classs superclasses are invoked before the interceptor method defined by the

interceptor class, most general superclass first.

5. After the interceptor methods defined on interceptor classes have been invoked, then,

in order:

(a) If any method-level interceptors are defined for the target class method that is to
be invoked, the methods defined on those interceptor classes are invoked in the
same order as the specification of those interceptor classes in the @Interceptors

annotation applied to that target class method.

(b) If a target class has superclasses, any around-invoke methods defined on those

superclasses are invoked, most general superclass first.

(¢) The around-invoke method, if any, on the target class itself is invoked.

6. If an around-invoke method is overridden by another method (regardless of whether

that method is itself an around-invoke method), it will not be invoked.

7. The deployment descriptor may be used to override the interceptor invocation order

specified in annotations.

8. The InvocationContext object provides metadata that enables interceptor methods to
control the behaviour of the invocation chain, including whether the next method in

the chain is invoked and the values of its parameters and result.

Figure 2: Rules for invocation of multiple business method interceptors [4].

Presence of multiple ways to specify interceptors and multiple rules deter-
mining the order of invocation challenges, therefore, developers’ comprehension
of software systems based on recent version of Enterprise JavaBeans. Without
adequate tool support, to understand the order of interceptor invocation, the
developer has to scrutinize her code and manually check which of the invocation
rules apply.

3 Tool Design

To assist comprehension of EJB-based software systems we have developed a
tool, called 12SD, for reverse engineering EJB applications with interceptors
to UML sequence diagrams. UML sequence diagrams visualize the sequence
of method invocations, including interceptors, and have also been shown to be
beneficial for program comprehension [9]. Moreover, since interceptor invocation
is essentially sequential and data independent, it is specifically well suited for
being portrayed by UML sequence diagrams.

Java
source

Java parser

AST (XML)

! ,
(XML parser)

Reverse Engineering

!

Sequence diagram (UMS)

!
(UML Speed)
!

Sequence diagram (SVG)

ejb-jar.xml

Figure 3: 12SD is implemented as a pipe-and-filter architecture.

The architecture of 12SD is shown on Figure 3: 125D is implemented as
a pipe-and-filter architecture [15]. The Java parser has been obtained using
JavaCC [16], a popular parser generation tool. Given a language grammar
JavaCC generates a Java program that can recognize matches to the grammar.
To parse Java code we have extended the Java grammar used in our visual
software analytics toolset SQuAVisiT [17], to include interceptor-related anno-
tations. The reasons to implement the Java parser as a separate component
rather than as a part of the central reverse engineering step are facilitation of
co-evolution with the Java language and reuse of individual components of 12SD.
From the co-evolution perspective we observe that the parser is the only part
of 12SD that has to be adapted when new language features are being added
to Java, as, e.g., expected in Java 7 under Project Coin. Moreover, once the
abstract syntax tree has been stored as an XML file, the same XML parser can

be used both for this file and for the deployment descriptor ejb-jar.xml. For
XML parsing we have opted for JDOM [18].

The core part of 12SD is the reverse engineering step. The reverse engi-
neering algorithm has been based on the EJB specifications [2, 3, 4]. However,
the standards are textual descriptions rather than formal specifications and as
such, might be subject to misinterpretations and ambiguities. To resolve po-
tential misinterpretations and ambiguities we have tested the algorithm against
the actual interceptor order, provided by an existing EJB container. Specifi-
cally, we have opted for the GlassFish application server [19], a free application
server, shipped by Oracle in a bundle with NetBeans Java EE edition. Since the
EJB 3.0 specification is also owned by Oracle, we expected the implementation
to adhere to the specification. The test cases were developed using Product
Manager, the example application distributed with GlassFish. If the sequence
diagram reverse engineered by 12SD did not match the behaviour of GlassFish,
the reverse engineering algorithm has been corrected to match the behaviour
of GlassFish. Examples of discrepancies between the standard and GlassFish
application server pertain to specification of total interceptor ordering in the de-
ployment descriptor, relative priorities of <interceptor-order> element and the
exclude- elements, and structure of the <method> element [10]:

We postpone a more detailed discussion of the reverse engineering algorithm
for business method interceptors till Section 3.1, life cycle callback interceptors
till Section 3.2 and timeout method interceptors till Section 3.3. The reverse en-
gineering step can either produce a sequence diagram or a warning, indicating
that the interceptors chain may be broken (Section 3.1). The sequence dia-
gram is stored in the UMS format suitable for visualization generation by UML
Speed?. Furthermore, since UMS is a plain text format, it makes the sequence
diagrams generated amenable for further analyses, e.g., such as discussed in [12].

The final step consists in visualizing the sequence diagram using UML Speed.
The sequence diagrams are stored as an image in the SVG graphical format. The
SVG format [20] has been designed with web-graphics in mind, and, therefore,
it allows linking the image to classes and methods mentioned in the sequence
diagram; facilitating system comprehension by visual inspection of the diagrams.

I12SD has been implemented as a plug-in for version 7.0.1 of NetBeans. Our
main reason for choosing NetBeans is that the EJB support in NetBeans is
better than in Eclipse [21]. We also plan to integrate 125D in Eclipse.

3.1 Business method interceptors

EJB-based programs combine three forms of method invocation: traditional
(“method A calls method B”), object-oriented (“method A calls method B of
class C but method B’ of the subclass C’ is actually executed”) and interceptor-
based. The business method interceptors reverse engineering algorithm assumes
that a class name C and a business method m in C are given, and produces a
sequence diagram, including the interceptors invoked when m is being called.

The reverse engineering algorithm consists of two parts: the main algorithm
following the order of the rules in Figure 2 (Section 3.1.1), and an auxiliary
algorithm traversing the inheritance hierarchy (Section 3.1.2).

2http:/ /umlspeed.sourceforge.net /

3.1.1 Main algorithm

The main reverse engineering algorithm ensures that interceptors are invoked
according to the rules in Figure 2. The algorithm assumes business method m
of a bean class C to be provided as the input. Auxiliary algorithm traverseln-
heritance called by main is discussed Section 3.1.2.

The precondition of main is that m is a business method in C, i.e., that m
satisfies the following requirements of [3]:

e The method names can be arbitrary, but they must not start with “ejb”
to avoid conflicts with the callback methods used by the EJB architecture.

e The business method must be declared as public.
e The method must not be declared as final or static.

e If the method corresponds to a business method on the session beans
remote business interface or remote interface, the argument and return
value types for a method must be legal types for Java Remote Method In-
vocation interface over the Internet Inter-Orb Protocol (RMI/IIOP) [22].
Legal types for RMI/IIOP are defined in Chapter 4 of [23].

e If the method is a web service method or corresponds to a method on the
session beans web service endpoint, the argument and return value types
for a method must be legal types for Java API for XML Web Services or
Java API for XML-based RPC (JAX-WS/JAX-RPC [24]). For instance,
Java primitive types such as.int or boolean are legal both for RMI/IIOP
and for JAX-WS/JAX-RPC.

e The throws clause may define arbitrary application exceptions.

Moreover, experiments with: GlassFish [19] have revealed that no interceptors
are invoked when m is an around-invoke method. Therefore, we assume as an
additional precondition that m is not an around-invoke method.

Since the interceptors are invoked sequentially, we opt for a global queue
Q of all the method invocations as the main data structure used. The queue
Q is initially empty. Whenever main or traverselnheritance decide that
a method should be invoked, a triple is enqueued to Q, containing names of
the caller class, of the callee class, and of the method called. The order of the
elements in the queue corresponds to the order of invocation.

For the sake of readability we present the algorithm main in multiple figures
(Figures 4-9), intertwined with explanation.

Recall that the interceptor invocation order defined in the deployment de-
scriptor, if present, overrides the interceptor invocation order specified in an-
notations (Rule 7 in Figure 2). Therefore, the first and the second step of the
algorithm (Figure 4) verify whether an interceptor invocation order is explicitly
specified in the deployment descriptor for C or for m. If this is the case, then
for each one of the interceptors mentioned in the deployment descriptor, one has
first to check whether their superclasses contain ©@AroundInvoke methods that
have to be invoked first.

If the interceptors’ invocation order has not been explicitly modified in the
deployment descriptor, then the default interceptors should be applied first if

10

present (Rule 1 in Figure 2). If default interceptors are present, they are de-
fined in the deployment descriptor and are applicable to a set of target classes.
Application of default interceptors can be excluded with the @ExcludeDefaultIn-
terceptors annotation or <exclude-default-interceptors> tag (Figure 5).

Figure 6 shows the next step dedicated to the class-level interceptors (Rule 2
in Figure 2). We stress that the @lInterceptors annotation introduces a sequence
of interceptor classes, and therefore “FOR class IN (@Interceptors(...) on C)”
also ensures that the interceptor classes are considered in the same order as they
are specified (Rule 3 in Figure 2). The call to traverseInheritance ensures
that if an interceptor class itself has superclasses, then the interceptor methods
defined by the superclasses are invoked before the interceptor method defined
by the interceptor class, most general superclass first (Rule 4 in Figure 2).

Method-level interceptors are called after the class-level interceptors (Rule 5a
in Figure 2). Similarly to class-level interceptors, the algorithm steps in Figure 7
ensures that the interceptors are invoked in the order of specification of their
classes in the @Interceptors annotation. Instead of one step in Figure 6, for the
sake of readability in Figure 7 we separate the analysis in two steps. Step 6
pertains to analysis of interceptors specified by means of annotations, while

1. IF (<interceptor-order> defined on C)

FOR class IN

<interceptor-order>
<interceptor-class>...< /interceptor-class>

< /interceptor-order>
DO traverselnheritance

GOTO 6
2. IF (<interceptor-order> defined on m)

FOR class IN

<interceptor-order>
<interceptor-class>...< /interceptor-class>

< /interceptor-order>

DO traverselInheritance

GOTO 8

Figure 4: The main algorithm starts by verifying whether the invocation order

is explicitly defined in the deployment descriptor.

11

3. IF (<exclude-default-interceptors> OR @ExcludeDefaultInterceptors de-

fined on m)

OR (<exclude-default-interceptors> OR. ©@ExcludeDefaultInterceptors de-
fined on C)

GOTO 4
ELSE FOR class IN

<interceptor-binding>
<ejb-name>*< /ejb-name>
<interceptor-class>...</interceptor-class>>

< /interceptor-binding>

DO traverselInheritance

Figure 5: Default interceptors are called before class- or method-level ones.

Step 7—to interceptors specified in the deployment descriptor.
Finally, interceptor methods defined on C and its superclasses are invoked

4. TF <exclude-class-interceptors> OR. ©ExcludeClassInterceptors defined on

m?
GOTO 6
5. FOR class IN (@lInterceptors(...) on C) OR IN

<interceptor-binding>
<ejb-name> C </ejb-name>
<interceptor-class>...</interceptor-class>

< /interceptor-binding>

DO traverselInheritance

Figure 6: Class-level interceptors are invoked in the order of the @Interceptors

annotation.

12

6. FOR class IN (Q@Interceptors(...) on m) DO traverseInheritance
7. FOR class IN

<interceptor-binding>
<ejb-name> C </ejb-name>
<interceptor-class>...</interceptor-class>
<method>
<method-name> m.name </method-name>

</method>

< /interceptor-binding>
OR IN

<interceptor-binding>
<ejb-name> C </ejb-name>
<interceptor-class>...< /interceptor-class>
<method>
<method-name> m.name </method-name>
<method-params>
<method-param>m.params[1]</method-param>
<method-param>...</method-param>
<method-param>m.params[n]</method-param>
< /method-params>

< /method>

< /interceptor-binding>

DO traverselnheritance

Figure 7: Method-level interceptors are invoked in the order of the specification

of their classes in the @Interceptors annotation.

(Rule 5 in Figure 2).

13

After all interceptors that should have been invoked, have been invoked, the
business method m itself should be called (Figure 9). In our previous work [10]
we have assumed presence of a reverse engineering technique capable of in-
ferring sequence diagrams for programs with traditional and object-oriented
method invocations, and augmented this technique with an algorithm for pro-
grams combining all three invocation forms. While this approach results in
the most complete picture of the invocations, it also might result in an overtly
complex diagram requiring close inspection, and therefore, hindering software
development in an IDE rather than facilitating it. Therefore, as opposed to [10],
in the algorithm we exclude the analysis of the business method body and fo-
cus solely on the interceptors invoked. To alert, the developer the algorithm
generates a warning if an @AroundInvoke method calls another business method
of another bean as invocation of this method can involve additional intercep-
tors. In this case, the developer can invoke I12SD again, focusing on one of the
methods called.

3.1.2 Traversing inheritance hierarchy

The traverselnheritance algorithm presented in Figures 10-12 ensures that
interceptor methods of superclasses are invoked before the interceptor methods
of the subclasses, most general superclass first. The algorithm assumes class D
to be provided as the input and updates the global queue Q.

Furthermore, traverselInheritance(class D) makes use of a list L and a
stack S. The list L contains all methods of all classes on the inheritance path
from D to the most general user-defined classfrom which D inherits. The stack
S cousists of pairs (c,n), where n is an ©@AroundInvoke method of a class ¢ on
the inheritance path. Both the list L and the stack S are initially empty.

Recall that rules 4, 5b and 5c¢ in Figure 2 require the around-invoke method
on the target class to be called after the around-invoke methods of the super-
classes. Since Step 3 of traverselInheritance reverses S to build Q, we start
by considering the input class itself such that the corresponding invocation be-
comes the last element of Q, i.e., “the currently analyzed class” c is initialized
as the input D.

Starting from D the algorithm traverses the inheritance chain from a subclass
to a superclass, collecting all around-invoke methods along the chain. However,
rule 6 in Figure 2 states that an around-invoke method overridden by another
method will not be invoked. Therefore, before pushing the pair (c,n) on S
we have to check whether n is overridden. The construction of L implies that
checking whether n is overridden is tantamount to checking membership of n
in L (Step 2(a)ii in Figure 11).

The last step of traverseInheritance, presented in Figure 12, reverses the
stack S and enqueues invocations to Q.

’ 8. For C perform traverselnheritance.

Figure 8: Interceptor methods defined on C and its superclasses are the last

interceptors invoked.

14

9. Enqueue (InvocationContext,C,m) to Q.
10. Analyse the body of m:

FOR each method invocation C’.m’ OR C.m’

Notify the user that invocation of m’ might involve interceptors

and recommend creating a new sequence diagram.

11. Store Q in the UMS format required for visualization.

Figure 9: Finally m is invoked and, if required, warnings are generated.

.LL=0,S=0,c=D.

Figure 10: Initialization of the local variables.

Recall that the invocation order can be controlled using the Invocation-
Context (Rule 8 in Figure 2). Specifically, if InvocationContext.proceed() is
unreachable from one of the methods invoked in the interceptor chain, then
the EJB container will deadlock. Hence, warnings are generated if Invoca-
tionContext.proceed() is potentially. unreachable. [12SD checks two conditions
that can cause InvocationContext.proceed() to become unreachable: if Invoca-
tionContext.proceed() occurs within a decision statement or a loop (Step 3(c)i
in Figure 12), or when there is no direct call to InvocationContext.proceed()
(there still may be a call to another method that in its turn calls InvocationCon-
text.proceed(); Step 3(¢)ii in Figure 12).

Furthermore, similarly to the main algorithm of Section 3.1.1 we generate
a warning if methods called might involve interceptors. As above, the developer
can invoke 12SD again, focusing on one of the methods called.

3.1.3 Correctness of the algorithm

We conclude this section with a brief discussion of the algorithm’s correctness.
To show partial correctness we have indicated for each step of the algorithm
which invocation rules prescribed by the EJB standards [2, 3, 4] does the step
implement. Algorithm traverseInheritance(class D) terminates due to finite-
ness of the inheritance path from Object to D. Each one of the loops in main
terminates due to finiteness of the Java code and of the deployment descriptor.

3.2 Life cycle callback interceptors

Construction of sequence diagrams in presence of life cycle callbacks requires
(1) identification of an occurrence of a life cycle event and (2) construction of
sequences of method invocations caused by the occurrence of the life cycle event.
Life cycle events are managed by the EJB container: while the bean itself can

15

2. DO

(a) IF (c contains an ©@AroundInvoke method) OR (there exists
<interceptor>
<interceptor-class>c< /interceptor-class>
<around-invoke>
<method-name>...</method-name>
< /around-invoke>
< /interceptor>)
i. Let n be the Aroundlnvoke method
ii. TF n not in L
push (c, n) on S.
(b) Add all methods of ¢ to the methods list L.

(¢) ¢ = superclass(c).

WHILE (user-defined(c))

Figure 11: Upwards traversal of the invocation chain.

request to be destroyed using the @Remove annotation, the container can also
decide to-destroy beans based on timeout considerations®. Similarly, when the
memory reserved by the container to store active stateful beans becomes full,
it will decide to passivate the least recently used bean [2]. Hence, destruction
and passivation events may occur independently from the source code, based
on the settings of‘the EJB container. Moreover, since a bean can be activated
only after it has been passivated and occurrence of a passivation event depends
on the settings of the container, occurrence of an activation event also depends
on the settings of the container. Finally, the bean instance is created not only
when a business method of a stateless session bean is invoked for the first time,
but also the same method has been invoked for the second time and the bean
instance has been destroyed between the method invocations. Hence, since de-
struction can happen solely based on the container settings, the same is also
true for (some of the) creation events. Dependency on the container settings
compromises portability, in the same way dependency on the object request bro-
ker implementation compromised portability of the CORBA interceptors [25].
Therefore, since the exact prediction of life cycle events goes beyond the abili-

3These time-out considerations are not related to the EJB Timer Service or timeout method

interceptors discussed in Section 3.3.

16

3. WHILE (not-empty(S))

(a) (c, n) = Pop(S);
(b) Enqueue (InvocationContext, ¢, n) to Q;
(c¢) Analyse n:
i. IF there is no call of InvocationContext.proceed() in n, report a
warning.
ii. IF a call of InvocationContext.proceed() occurs inside a decision
statement or a loop, report a warning.
iii. FOR each method invocation ¢’.m’ OR c.m’ where.m’ != pro-
ceed()
Notify the user that invocation‘of m’ might involve intercep-
tors and recommend creating a new sequence diagram.

iv. Add (c,InvocationContext;proceed()) to Q.

Figure 12: Reversal of the stack S and update of the invocation queue Q.

ties of static source code analysis, our algorithm assumes the class C and the
event e as inputs, and generates a warning stating that additional, potentially
undesirable, life cycle events can occur during the execution of method calls
caused by e, depending on the Java source code, XML deployment descriptor
and settings of the EJB container.

The reverse engineering algorithm for life cycle interceptors follows the big
lines of the reverse engineering algorithm for the business method interceptors.
However, since life cycle interceptors are invoked when a life cycle event takes
place rather than when a business method is called, all checks related to m are
dropped. Moreover, as the event e can be one of PostConstruct, PreDestroy,
PostActivate or PrePassivate, four different annotations and the corresponding
deployment description tags should be considered instead of @Aroundlnvoke.
Finally, we have to differentiate between the interceptors defined in the bean
itself and those defined in other classes: interceptors defined on the bean itself
do not need to invoke InvocationContext.proceed().

3.3 Timeout method interceptors

Rules governing the invocation of timeout method interceptors are almost iden-
tical to those for business method interceptors in Figure 2. The only differences
are that instead of around-invoke methods the rules consider around-timeout
methods, i.e., methods with the @ Around Timeout annotation or <around-timeout>
tag in the deployment descriptor.

17

W Productianagement-ejb - NetBeans IDE 6.5

Fie Edit View Navigate Source Refactor Run Debug Profle Versioning Tools Window Help
PEHERREe T dAT W b 6B-G-
Start Page x| [<] ProductFacade java * x| [EJBObjectjava x| [] ceptor java x| |2 Jjava_ x| || Product Java x|
[EB-8-9wS5ERE%| ool

@stateless

public class ProductFacade extends EJBObject implements ProductFacadeRemote |
@PersistenceContext

private EntityManager em;

@ @Interceptors({FroductIdValidationInterceptor.class,
Performancelnterceptor.class})
=] public String productInfo (int id) {
Navigate 3
Product product = find(new Integer(id)); Preprocessor Elocks 5
if (preduct !'= nmull) {
Show Javadoc Alt+F1
" + product.getManufacturerId().getName(| |1NdUsades e
" + product.getDescription() + Call Hierarchy
" + product.getPurchaseCost() + Insert Code... Alt+insert
ty: " + product.gethAvailable().toString(); FixImports Cirl+Shift+1
Refactor 3
} else { Format Alt45hift 47
Teturn null; Reverse Engineer.
}
- } Run File shift+76
Debug "ProductFacade. java” Cirl+shift+F5
Run Into Method
S New Watch... Cirl+shift+F7
| | Output - Interceptor Sequence Diagram Toggle Line Ereaigornt Cul+s
Profiing »
[Show saguence disgrem for prosuctInfoline
‘ Cut Cirl 4%

Figure 13: 12SD integrated in the NetBeans development environment.

The only difference between business method interceptors and timeout method
interceptors is related to class-level interceptors. In the case of business method
interceptors, the class-level interceptor applies to all methods of the target class.
In the case of timeout method interceptors, however, the class-level interceptor
applies only to timeout-methods of the target class. Recall from Section 2.2
that timeout methods are methods annotated with @Timeout. This means that
the algorithms discussed in Section 3.1 can be used to reverse engineer sequence
diagram for timeout method interceptors; however, 12SD offers the opportunity
to generate such a diagram if either a timeout method or a class containing at
least one such method is selected by the user.

4 Use cases

In this section we present three use cases showing the applications of 12SD. In the
first use case discussed in Section 4.1 we focus on a developer which uses 125D
to gain understanding of the software. In Section 4.2 12SD is applied as part of
the quality assessment. Quality assessment is based on comparing the system
being assessed with comparable systems. To assist in the latter task Section 5
compares interceptor use in two benchmark systems. Finally, in Section 4.3 we
discuss the application of 12SD to an incomplete system.

18

interceptor. ProductldValidationinterceptor interceptor. Performancelnterceptor ejb.EJBObject || ejo.ProductFacade]

proceed()

validate(arg: java

proceed()
Durati

ontes
I

e

!

1

k

proceed()

proceed()

44+ == — —

|
|
|
{
1
Il
T
i
T

|
|
|
|
)
{
1

-+

int)

Figure 14: Sequence diagram created by 12SD for ProductFacade.productinfo.

4.1 12SD for software development

To illustrate how 12SD can support a software developer we consider a modi-
fication of an existing system. As the running example we consider a product
management system inspired by one of the NetBeans samples. Figure 13 shows
a code snippet from one of the files in the NetBeans IDE.

Developer Alice intends to optimize performance of the business method pro-
ductlnfo. Given a product identifier, productInfo first retrieves the information
about the corresponding product from the database, creates the corresponding
object (POJO [2]) and then consults the data stored in that object to provide
additional information about the product manufacturer,using methods find and
Manufacturer.getName, respectively.

Alice starts by measuring the execution time of productinfo: she applies the
Performancelnterceptor to the business method. Knowing that the method level
interceptors are called in the same order as they are listed in the @Interceptor
annotation, Alice adds Performancelnterceptor after all other interceptors that
have already been defined for productinfo, i.e., after ProductldValidationIntercep-
tor (see Figure 13).

Running the program Alice observes that the execution time of productinfo
constitutes 2016 milliseconds, which Alice attributes to the need to retrieve data
from the database. Since productinfo consults the database twice, Alice decides
to measure the execution of each one of the database operations separately. To
this end she calls System.currentTimeMillis before find, immediately after find
and after Manufacturer.getName, and calculates the time elapsed between the
calls. She discovers that find takes 546 milliseconds, while the time needed for
Manufacturer.getName is negligible and reported as 0 milliseconds. Where did
the remaining 2016 — 546 = 1470 milliseconds go?

I2SD can help Alice to resolve the mystery. By selecting productinfo in the
IDE (Figure 13) she can create the sequence diagram of the interceptors involved
when the productlinfo is called. The output window in the bottom of Figure 13
shows a link to the sequence diagram produced by 12SD (Figure 14). Looking
at this diagram Alice can observe that, in fact, Performancelnterceptor measures
time spent on

(1) user access validation implemented in EJBObject.validateAccess,
(2) control transfer by means of InvocationContext.proceed,

(3) logging implemented in ProductFacade.logMethods,

19

(4) another control transfer by means of InvocationContext.proceed, and fi-
nally,

(5) the business method ProductFacade.productinfo itself.

Hence, the measurements above indicate that t; + to + t3 + t4 + t5 = 2016
and t5 = 546, where t; is the execution time of the step (i) in milliseconds.
Assuming to and t4 to be negligible, Alice should check how the remaining
1470 milliseconds are spent on t; (EJBObject.validateAccess) and t3 (Product-
Facade.logMethods). To this end she adds appropriate System.currentTimeMillis
calls and discovers that the lion’s share of the execution time has been spent on
t1 (EJBObject.validateAccess).

The performance issue encountered by Alice can be attributed to a common
problem in using interceptors, i.e., combination of interceptors with inheritance
that can easily lead to a very convoluted behaviour [26].

4.2 125D for quality assessment

In the second example we consider the quality assessor’s perspective. Quality
assessor Bob decides to use software metrics to get insights in system quality and
maintainability. As suggested in [12], he considers depth-of the scenario as an
important characteristic of the architecture complexity. He wants to investigate
how deep the interceptor-related scenarios in his system are. Formally, the
depth of a scenario is defined as the number of calls in the scenario [12]. We
adapt this definition and consider only methods that can be reverse engineered
by 12SD, i.e., interceptor invocations, calls to InvocationContext.proceed(), calls
to AroundInvoke-methods within the bean itself, business method invocations
and methods triggered by life cycle events. For example, the depth of the
interceptor-related scenario in Figure 14 is 11.

To calculate the scenario depths for different business methods of his system
Bob runs 12SD as a batch job that creates a separate UMS file for each class
and business method. Next these UMS files are analyzed to count the number
of method calls per UMS file and, subsequently, to determine the interceptor-
related scenarios’ depths. Finally, he can compare the values obtained with
similar values obtained for comparable systems. To assist Bob in the latter task,
Section 5 presents a similar investigation for a number of benchmark systems.

4.3 125D for incomplete systems

We have mentioned in the introduction that 12SD should be applicable to incom-
plete programs. To illustrate this point, we consider the following example. Let
Charlie be a novice programmer that recently joined an EJB3-based project and
started implementing his first bean. Charlie’s bean is incomplete and contains
for the moment only the class name. Charlie believes that when existing beans
are being constructed certain resources are always allocated. However, he does
not know which resources precisely are allocated, and whether these resources
are sufficient for his bean.

Charlie starts with reconstructing the sequence diagram for the @PostCon-
struct life cycle callback interceptors of his own bean. Despite the fact that

20

his code is incomplete, default interceptors as well as interceptors on the su-
perclasses of Charlie’s bean can be invoked and allocate the resources he need.
Hence, analyzing the diagram produced by 12SD, Charlie can decide whether
additional resources need to be allocated.

5 125D for benchmarking interceptors’ use

To assist quality assessor Bob (Section 4.2) in evaluating his project, we need
a frame of reference, i.e., we need to understand how interceptors are used
in practice. While performing an extensive empirical investigation was not the
main goal of our work, in this section we show how 12SD can assist in conducting
such an evaluation.

We have start by performing a series of searches on Google code search.
Specifically, we looked for presence of interceptor-related annotations in Java
files and interceptor-related tags in files called ejb-jar.xml.. We continued this
study by a more in-depth investigation of the interceptors’ scenarios’ depth
induced by business methods in 108 open source software systems.

5.1 Presence of annotations and tags

In January 2012 we have conducted a series of searches on Google code search
to determine the frequency of use of different interceptor-related constructs.
Statistics obtained by means of these searches are summarized in Figure 15.
Inspecting this figure we observe that the most frequently used annotations are
©@PostConstruct (3117 hits) and @PreDestroy (690). While these annotations
can be used to introduce life cycle callback interceptors, this is not necessarily
the case (cf. Section 2)." The third most popular annotation is @AroundInvoke
(320 hits) that is related to business method interceptors. Finally, the least
popular annotation is @AroundTimeout (14 hits). This, however, should not be
surprising: as opposed to life cycle callback interceptors and business method in-
terceptors introduced in [2], timeout method interceptors have been introduced
in [4], i.e., three years later.

The numbers of hits associated with the deployment descriptor XML files
were clearly lower that those associated with annotations: the most popular tag
<around-invoke> corresponds to 12 hits, while Google code search failed to find
files containing the <post-construct> tag. These figures suggest that developers
prefer to specify behaviour within Java code as opposed to separate configu-
ration files, and therefore, the results agree with our earlier observation that
maintenance of centralized configuration files might become prohibitive [26].

Summarizing the preceding discussion, we remark that such annotations as
@PostConstruct and @PreDestroy are not necessarily related to interceptors, and
the use of timeout method interceptors in the “Google code search” code base
was very limited. Therefore, in Section 5.2 we focus on an empirical study of
business method interceptors.

21

Number of hits for interceptor-related annotations in Jave

@ExcludeDefaultinterceptors| ©

@ExcludeClasslInterceptors o

@Interceptors ©

@PrePassivate o

@PostActivate o

@PreDestroy o

@PostConstruct o

@AroundInvoke ©

@AroundTimeout o

T T T T T T T T
10 20 50 100 200 500 2000

Figure 15: The most popular annotations @PostConstruct and @PreDestroy are
not necessarily used to introduce interceptors. The least popular one ©@Around-

Timeout introduces the most recent type of interceptors.

5.2 Business method interceptors in practice

To obtain insights in how business method interceptors are used in practice,
we have downloaded repositories of all projects found via “Google code search”
that contain files with @AroundInvoke or @Interceptors annotations. In this way
we have obtained 108 repositories: the number of repositories does not equal to
the number of @AroundInvoke-hits together with the number of @lnterceptors-
hits, since multiple annotations, and therefore, hits can be present in the same
repository. Next, we have observed that repositories usually contain multiple
interrelated versions of the same software system, e.g., in the /trunk and /tags
folders. Moreover, some repositories contain multiple /trunk and /tags folders
associated with different subsystems. To ensure statistical soundness of the
results to come, we have decided to consider only one software version per
repository, namely the “development version” consisting of the files in /trunk
folders.

Recall that the precondition of the reverse engineering algorithm described
in Section 3.1.1 is that the input method is a business method, i.e., satisfies the
requirements of [3] and is not an around-invoke method. The current implemen-
tation of 125D does not verify these conditions completely: we check only that
the input method is public and that it is not an around-invoke method. In total,
systems in the 108 repositories contained 323,014 public and non-around-invoke
methods: the smallest system included 11 methods, the largest one—60,681.
A more precise implementation of the conditions defining when a method is a
business method [3] is considered as a part of the future work.

22

Out of 323,014 methods that could possibly have been intercepted, only
5,057 (=~ 1.57%) methods were intercepted. This result seems to support the
finding of our previous study [27] stating that the use of interceptors is usually
limited to a relatively small part of the software system. Closer inspection of
the data reveals, however, a slightly different picture:

e 19 systems did not include intercepted methods at all. This might seem
puzzling since we have downloaded only projects containing files with
©@AroundInvoke or @lnterceptors annotations. However, in 17 out of 19 cases
presence of interceptors does not necessarily indicate their use. For in-
stance, the carebearmail.googlecode.com project defines one interceptor but
does not define intercepted methods. Similarly, materiasuch.googlecode.com
defines one interceptor and contains a class referring to the intercep-
tor through @Interceptors annotation. However, the referring class does
not contain methods. The two remaining systems, redams.googlecode.com
and rockframework.googlecode.com make use of Apache Struts interceptors
rather than EJB interceptors. While Apache Struts interceptors are es-
sentially similar to the interceptors considered in this paper, the Apache
Struts deployment descriptors are not called ejb-jar.xml, and therefore, are
not recognized by 12SD.

e 36 systems have less than 1% of intercepted methods, and 31 additional
systems have between 1% and 5% of the methods. For these projects we
can indeed claim that the use of interceptors is limited as suggested in [27].

e 18 further systems have between 5% and 25% of the intercepted methods.

e Finally, four systems have almost all methods being intercepted. In these
systems a default interceptor is specified in the deployment descriptor,
and therefore, calling any business method should involve invocation of
the default interceptor, unless this invocation has been explicitly excluded
using <exclude-default-interceptors> or @ExcludeDefaultInterceptors.

The overall distribution of the percentages of methods being intercepted can be
considered log-normal (after elimination of the zeros and the logarithmic trans-
formation, Shapiro-Wilk’s W = 0.9871 and p-value = 0.5323, i.e., normality
hypothesis cannot be rejected).

Using 12SD we have reverse engineered sequence diagrams for the methods
above and calculated depths of scenarios, i.e., numbers of calls in the sequence
diagram [12]. Every sequence diagram consists of a series of interceptor invoca-
tions, each followed by a call to InvocationContext.proceed(), and the final call
of the business method itself. Therefore, depth of scenario is always an odd
number:

e 617 methods (12%) induce scenarios of depth 1, i.e., scenarios that do not
involve interceptor invocation. Scenarios of depth 1 are possible if no inter-
ceptors are indicated for the business method, or if some of the interceptors
are explicitly excluded with <exclude-class-interceptors> or @ExcludeClass-
Interceptors. We have also observed that in some situation scenario depth
can be underestimated by 12SD. For instance, method getUserName from
com.alesj.blade.login.LoginAction in the bladecut.googlecode.com repository

23

contains annotation @Interceptors(Seamlinterceptor.class). The file Seam-
Interceptor.java is part of the Seam framework [6] and, hence, its source
code is not included in the bladecut.googlecode.com, and therefore, is not
included in the analysis. Hence, 12SD calculates the depth of the scenario
for getUserName as 1.

e The lion’s share of the intercepted methods, 4064 out of 5057 or 80%, in-
duce a scenario of depth 3, corresponding to invocation of one interceptor.

e 317 methods or 6% induce a scenario of depth 5, corresponding to two
interceptors.

e The remaining 59 methods induce scenarios deeper than 5 with the deep-
est scenarios of depth 13 (six interceptors). The only packages with
methods inducing scenario of depths 9, 11 and 13 .are subpackages of
org.apache.openejb.test in svn.apache.org.

Inspired by the previous observation that the test-packages in svn.apache.org
include deep scenarios, we have decided to check whether, in general, methods
in test packages induce deeper scenarios than in non-test packages. As test
packages we consider packages containing segments “test” or “tests” in the fully
qualified names. Formally, we state the following hypotheses:

e Hj: Depths of scenarios for methods in test-packages are following the
same distribution as those for methods in non-test-packages;

e H,: Depths of scenarios for methods in test-packages are deeper than
those for methods in non-test-packages.

Since the distribution of the scenario depths for methods in test packages is not
normal (Shapiro-Wilk’s test statistic W = 0.7832, p-value < 2.2 x 10716 to test
the hypotheses we apply the Mann-Whitney test, a non-parametric counterpart
of the classic t-test for two samples. The test statistics equals 624857.5 and
the p-value equals 6.36 x-107°, i.e., we can confidently reject Hy and claim
that depths of scenarios for methods in test-packages are deeper than those
for methods in non-test-packages. Furthermore, Hy can be rejected even if the
aforementioned testing subpackages of org.apache.openejb.test are excluded from
consideration (p-value calculated by the Mann-Whitney test equals 1.48 x 10~7).
Rejecting Hy suggests that at the time of data collection (January 2012) the
depths of interceptor scenarios in the production code of open-source software
systems was limited.

Additional support of the limited depth of interceptor scenarios can be found
in the number of systems with methods inducing scenarios of a given depth. Fig-
ure 16 illustrates that the number of systems with methods inducing scenarios of
a given depth rapidly decreases with the increase of scenarios depth: 54 systems
have methods inducing scenarios of depth 3, and only 15—of depth 5.

Threats to validity As any empirical investigation, our study is subject to
a number of threats to validity. One commonly distinguishes three kinds of ex-
periment validity: construct validity, internal validity and external validity [28].

Construct validity can be threatened by calculation of the scenarios depths
performed by 12SD. As explained above, 12SD tends to underestimate depths

24

50
|

Number of systems
30

20

Scenario depth

Figure 16: In most systems the depths of interceptor scenarios is limited.

of scenarios that involve non-EJB interceptors, e.g., originating from the Seam
framework. Moreover, since the current implementation of 12SD approximates
the notion of a business method of [3] by checking whether the input method is
public and it is not an around-invoke method, the data obtained includes values
for methods that should not be considered as business methods, and, hence,
should be excluded.

Internal validity pertains to soundness of procedures used to derive conclu-
sions within the experimental settings. To ensure internal validity we have paid
special attention to the choice of appropriate statistical procedures.

Finally, external validity pertains to the ability to generalize the conclusions
beyond the experimental settings. In our case, this would indicate the ability
to generalize our conclusion beyond the systems included in the benchmarks
collection. The systems we have included are open-source and are predominantly
hosted at googlecode.com. To ensure external validity we intend to replicate
this study on a larger and more diverse code base. Moreover, to ensure that
our conclusion applies to commercial software, the code base has to include
commercial software systems as well.

5.3 DataPortal and WasabiBeans

To illustrate how interceptors are used in practice, we discuss two systems from
the collection above. We have opted for two systems with a comparable number
of Java files, DataPortal and WasabiBeans. In addition to business method
interceptors, in this subsection we also discuss lifecycle callback interceptors.

25

:uk.ac.dI.dE.wre.sess\onbeans.EJBOb'eclI :uk.ac.dl.dE.core.sessicnbeans.ws.Da\aPcﬂa

|

T
proceed()

J ! getDataReferences(arg: String)

T T

|
t
I
i

|

javax.interceptor. ionContexty |
1

|

i

Figure 17: Sequence diagram created by 12SD for DataPortal.getDataReferences.

:CallBackInvocationContext :uk,ac.dl.dE.core.sessionbeans.EJBOb'ectI :uk,ac.dl.dE.oore.sessionbeans,session,SessionBeanI
init()

| | postConstruct

Figure 18: Sequence diagram for creation of an instance of SessionBean.

DataPortal The first system we consider is the DataPortal?, a visual front-
end to one or more ICAT repositories, containing scientific data generated by
facilities such as synchrotrons, satellites and telescopes. Version 3.2.2.1 of the
system contains 635 files, 275 out of them are Java files.

No deployment descriptor is present and only one file, DataPortal.java, has
an QInterceptors annotation, namely Q@lnterceptors({ArgumentValidator}). Class
DataPortal inherits from SessionEJBObject, which inherits from EJBObject. While
SessionEJBObject does not have Aroundlnvoke-methods, EJBObject has one, named
logMethods, that should be invoked first when any business method of DataPor-
tal is called. Moreover, the @Interceptors({ArgumentValidator}) annotation is
specified at the class level in DataPortal.java, meaning that the corresponding
interceptors should be invoked for any-business method of this class, unless
class level interceptors are explicitly excluded. T'wo out of 24 methods defined
in DataPortal.java, init.and isFinished, exclude class level interceptors with @Ex-
cludeClassInterceptors. Keeping in mind that interceptor invocations should be
followed by a call to InvocationContext.proceed() and that the last call in the
sequence diagram generated by 12SD is the call to the business method itself,
we can observe that init and isFinished produce scenarios of depth 3, while all
other methods of DataPortal produce scenarios of depth 5. Figure 17 shows one
such scenario of depth 5, namely, the sequence diagram created for DataPor-
tal.getDataReferences.

The only life cycle annotation in the system is @PostConstruct present in
SessionBean and in EJBObject. However, SessionBean inherits from SessionE-
JBObject, which inherits from EJBObject, and, therefore, when an instance of
SessionBean is created both the @PostConstruct method of SessionBean and the
©@PostConstruct method of EJBObject should be called (Figure 18). Hence, the
depth of the scenario produced by SessionBean and the instance construction
event is 2. By a similar argument is the depth of the scenario produced by
EJBObject and the instance construction event is 1. Moreover, for all classes,
directly or indirectly inheriting from EJBObject (with exception of SessionBean)
the depth of the scenario corresponding to the bean instance construction is 1.
The system contains 16 such classes.

4http://dataportal.googlecode.com/

26

«interceptor» «interceptor»
Debuginterceptor JCRSessioninterceptor

N

ACLService Locking ObjectService VersioningService

I

c D p: Linkservice RoomsService TagService UserService

Figure 19: Inheritance and interceptor use in WasabiBeans.

WasabiBeans WasabiBeans, abbreviating Web Application Services and Busi-
ness Integration, is a JavaEE-based framework to support the establishment of
cooperative work and learning environments. ‘WasabiBeans® has been developed
at University of Paderborn, Germany. The most recent version of WasabiBeans
counts 324 Java files.

Similarly to the DataPortal case, no deployment descriptors were found in
the system. Two classes contained Aroundlnvoke-methods, i.e., should be consid-
ered as interceptors: Debuglnterceptor, that is not mentioned in the remaining
Java files, and JCRSessionlnterceptor. The latter interceptor annotates six beans,
including ObjectService. None of these beans inherits from another bean. How-
ever, nine additional beans inherit from ObjectService, bringing the total number
of beans that can lead to invocation of JCRSessionInterceptor to 15. In all beans
the JCRSessionlInterceptor interceptor is specified at the class level. Since none
of the business methods of these classes excludes class-level interceptors, all
business methods of the 15 beans give rise to interceptor-related scenarios of
depth 3. Inheritance and interceptor use in WasabiBeans are summarised in
Figure 19.

Life cycle annotations in the system are @PostConstruct and @PreDestroy.
Both annotations are used in the aforementioned six beans, annotated with
JCRSessionlnterceptor, as well as in four additional beans. None of these 6+4=10
beans inherits from another bean and the @PostConstruct (@PreDestroy) annota-
tion appears only once in each file. Therefore, only one method will be invoked
when a bean instance is being created or destroyed, namely, the @PostConstruct
(@PreDestroy) method of the bean itself.

Comparing DataPortal and WasabiBeans We observe that in both sys-
tems the use of interceptors has been quite limited: in 18 files out of 275 in
DataPortal and in 20 files out of 324 in WasabiBeans. Moreover, neither of
the systems specified interceptors in the deployment descriptor. The limited
adoption of interceptors is not surprising as they express dependencies that are

Shttp://code.google.com /p/wasabibeans/

27

known to hinder development of EJB applications [7, 8, 29], and, hence, are
avoided by developers. Furthermore, we observe that in both systems life cycle
events propagate further through the system than the business method inter-
ceptors: in both cases, all beans involved in business method interception are
also involved in life cycle interception, but not other way around.

The way interceptors are used differs strongly from one system to another.
The DataPortal developers opted for a more complex interplay between inheri-
tance and interceptors involving a limited number of classes, resulting in deeper
scenarios for these classes: 5 for business method interceptors and 2 for life
cycle interceptors. The WasabiBeans developers have preferred to use a sim-
pler structure reflected in more shallow scenarios, but have applied the business
method interceptors technology on a larger scale. Hence, when future develop-
ment and maintenance of DataPortal demand a more profound knowledge of
EJB 3.0 from the developer responsible for a limited number of classes, devel-
opment and maintenance of WasabiBeans require only a basic knowledge of the
technique but (potentially) from a larger group of developers.

6 Related work

Presence of complicated dependencies between the implementation components
and the EJB container make development; testing and management of EJB
applications to a challenging task [7, 8,30, 29]. To facilitate these tasks a moni-
toring system [8] and a profiler {29] have been proposed. Both solutions assume,
however, that the EJB application is complete and can be executed. We pur-
sue a complementary approach and aim at supporting the ongoing development
process, i.e., 125D is capable of analyzing incomplete, and hence, non executable
programs.

The current paper builds on-and extends our previous work on dependency
injection [26], and specifically on EJB interceptors [10, 27]. Specifically, we
extend [10, 27] by discussing EJB timeout methods (Section 3.3) and applying
[2SD for empirical evaluation of the interceptors use (Sections 5.1 and 5.2).

In general, reverse engineering code to UML sequence diagrams is a well-
studied research problem: both static and dynamic approaches have been pro-
posed. Static approaches, such as [31, 32, 33, 34], do not attempt to execute
the system under investigation, and infer sequence diagrams from the source
code. Dynamic approaches derive sequence diagrams from observing the sys-
tem’s run-time behaviour [35, 36, 37, 38, 39, 40]. Furthermore, this research
has lead to a number of reverse engineering tools (see [41] for a recent survey of
the area). Dynamic approaches are known to produce more precise results: e.g.,
due to presence of dynamic binding. Applicability of the dynamic approaches is,
however, restricted by the fact that the system analyzed should be executable,
while static approaches are capable of analyzing incomplete systems. As ex-
plained above, one of our goals consisted in supporting the software developers
during the development process, we had to consider incomplete or not neces-
sarily executable systems, and, hence, we opted for a static approach. When
compared with the existing static approaches to reverse engineering to UML
sequence diagrams [34, 31, 32], 12SD focuses on dependencies injected in system
code, that were not considered by most of the existing approaches. The only

28

work where such programs are considered as a subject of the reverse engineer-
ing effort is our previous work [10]. Building on and extending [10] this paper
presents 125D, going beyond the analysis of business method interceptors and
focusing on the tool-related aspects as opposed to purely algorithmic ones.

Reverse engineering sequence diagrams can be seen as related to detection of
EJB patterns and anti-patterns [42, 43]. Patterns and anti-patterns pertaining
to invocation of interceptors can be defined on the level of the corresponding
sequence diagram. 12SD can be then used to infer the sequence diagram and
check for presence of such anti-patterns. Moreover, EJB anti-patterns can be
detected [44] based on EJB Framework Specific Modeling Language [45], which
can further be configured to identify interceptors.

Prior to their emergence in Java EJB applications, interceptors were avail-
able in CORBA [1]. In CORBA, different interceptor instances can be registered
within a object request broker component. Once a request is intercepted, all
the registered interceptor instances will be invoked by the object request bro-
ker. The invocation order of interceptors might, however, be dependent on the
specifics of the object request broker implementation in the same way the in-
vocation order of life cycle callback interceptors depends on the settings of the
EJB container. Thus, while some implementations allow interceptors to define
the invocation order, this would introduced dependencies between the intercep-
tors, and, hence, compromise their portability [25]. This portability argument
holds to lesser extent for business method interceptors: the EJB container has
to obey the rules governing the invocation order fixed in the EJB3 standard [2].

As explained above, interceptors are in a way similar to AOP. In the AOP
community sequence diagrams are uised in the forward engineering for choice of
join points [46]. Cross-cutting concerns have been modeled using UML sequence
diagrams [47] and used to derive flow graphs and flow trees to support test
generation [48]. While reverse engineering sequence diagrams of systems with
aspects or cross-cutting concerns did not seem to have so far attracted attention
of the AOP research community, related notions of call graph and control-flow
graph have been studied in context of static analysis and program maintenance.
Sereni and de Moor [49] adapted the notion of a call graph for aspect-oriented
programs. Unlike a sequence diagram the call graph, however, contains only
information about the which methods (advices) can be called but not about
their order of invocation. Moreover, the approach of [49] did not support the
“around” advice, essential to implement business method interceptors. These
shortcomings have been addressed in [50], where an inter-procedural aspect
control flow graph has been proposed. This work is complementary to ours:
while control flow graphs necessarily provide more detailed information than
sequence diagrams, our technique takes into consideration intricate interplay
between inheritance and multiple kinds of interceptors.

Finally, while 12SD applies reverse engineering techniques to programs with
interceptors, in a number of papers the opposite approach has been taken, i.e.,
programs with interceptors have been used as means to implement reverse en-
gineering techniques [51, 52].

29

7 Conclusion

In this paper we have introduced 12SD, a reverse engineering tool for Enterprise
JavaBeans with interceptors. While development, testing and management of
EJB applications are experienced as difficult, 12SD can support both developers
and quality managers by providing them with appropriate information: devel-
opers can benefit from visual representation of the interceptor invocations by
means of familiar UML sequence diagrams, while quality managers can obtain
brief summaries giving a general overview of the project use of the interceptor
technology. 12SD can be used either via NetBeans or as a stand-alone tool.
We stress that the current prototype implementation focusses on providing the
desired functionality rather than on performance. While inferring a sequence
diagram for a given business method or a life-cycle event happens almost instan-
taneously, performance of the batch processing of thousands of queries should
be improved.

I2SD has been implemented as a highly modular pipe-and-filter architec-
ture [15]. This architectural decision facilitates evolution of 12SD and reuse of
its individual components [53]. We have discussed two use cases showing the
applications of 12SD during software development (Sections 4.1-and 4.3) and as
part of the quality assessment (Section 4.2). To support the application of 125D
for quality assessment we have conducted an empirical evaluation of the inter-
ceptors use in practice (Section 5), and observed that the depths of interceptor
scenarios in the production code of open-source software systems is limited.

As future work we consider a number of possible directions. The first di-
rection pertains to interpretation of the EJB specifications by 12SD. From the
language perspective, 12SD will be extended to incorporate more recent exten-
sions to the interceptor model such as @InterceptorBinding [54]. We also intend
to implement a more precise check of the requirements a method has to satisfy
to be considered a business method [3]. The second direction is related to the
way user can control 12SD. Sequence diagrams produced by the current version
of 12SD are focus on interceptors only and do not consider method bodies. We
intend to extend the algorithm and provide the user with the ability to indicate
the desired nesting level, or method bodies that should be included or excluded
in the analysis. This would also allow Bob (cf. Section 4.2) to obtain additional
metrics related to the depth of the scenario, e.g., the number of interceptors
at a given nesting level. Finally, using modern aggregation techniques [55, 56]
Bob can obtain a general picture of the interceptor usage from metrics values
obtained for individual scenarios. The third direction is related to integration of
[2SD with other software systems. 12SD will be connected to our visual software
analytics toolset SQuAVisiT [17]. This connection will make EJB applications
immediately amenable for multiple analysis and visualization techniques already
integrated in SQuAVisiT. Next, in addition to the NetBeans plugin described in
Section 3, we plan to integrate 12SD in Eclipse. Since the core part of the imple-
mentation is a standard Java module, only the GUI and the plug-in mechanism
should be reimplemented to achieve Eclipse integration. Finally, we intend to
conduct a number of user studies involving 12SD: in the first series of studies we
will ask the participants to use [12SD to perform a number of development tasks
akin to the task performed by Alice in Section 4.1, while in the second series
of studies we will ask the participants to perform a number of analysis tasks
akin to the ones carried out by Bob in Section 4.2 using the 125D + SQuAVisiT

30

combination. After implementing the aforementioned tool extensions we will
revisit the empirical evaluation of Section 5.2.

References

[1]

2]

[10]

Narasimhan, P., Moser, L.E., and Melliar-Smith, P.M.: Using interceptors
to enhance CORBA. IEEE Comp., 1999. 32 (7), pp. 6268

Sun Microsystems: Sun Microsystems. JSR-220 Enterprise JavaBeans 3.0
(Final Release), 2006

EJB 3.1 Expert Group: EJB 3.1 Expert Group. JSR-318 Enterprise Jav-
aBeans, Version 3.1 (Final Release), 2009

EJB 3.1 Expert Group: EJB 3.1 Expert Group. Interceptors 1.1, 2009

Vanbrabant, R.: Google Guice: Agile Lightweight/ Dependency Injection
Framework. APress, Berkeley, CA, USA, 2008

Red Hat: Red Hat. Seam - Contextual Components. A Framework for Java
EE 5, 2007

Bellur, U.: A Methodology & Tool for Determining Inter-component De-
pendencies Dynamically in J2EE Environments. In Proceedings of the
Third International Conference on Autonomic and Autonomous Systems.
IEEE Computer Society, Washington, DC, USA, pp. 14:1-14:8

Kehe, W., Zhuo, W., Xing, Z., and Gang; M.: Design and implementation
of the monitoring system for ejb applications based on interceptors. In
Advanced Computer Theory and Engineering (ICACTE), 2010 3rd Inter-
national Conference on, vol. 4. pp. V4-5-V4-9

Tilley, S.R., and Huang, S.: A qualitative assessment of the efficacy of
UML diagrams as a form of graphical documentation in aiding program
understanding. In S.B. Jones, and D.G. Novick (Eds.) SIGDOC. ACM, pp.
184-191

Serebrenik, A., Roubtsov, S.A., Roubtsova, E.E., and van den Brand,
M.G.J.: Reverse engineering sequence diagrams for Enterprise JavaBeans
with business method interceptors. In A. Zaidman, G. Antoniol, and
S. Ducasse (Eds.) WCRE. IEEE Computer Society, pp. 269-273

Murphy, G.C., Kersten, M., and Findlater, L.: How are Java software
developers using the Elipse IDE? IEEE Software, 2006. 23 (4), pp. 76-83

Muskens, J., Chaudron, M.R., and Westgeest, R.: Software architecture
analysis tool: Software architecture metrics collection. In Proceedings 3rd
PROGRESS Workshop on Embedded Systems. pp. 128-139

Panda, D., Rahman, R., and Lane, D.: EJB 3 In Action. Manning Publi-
cations Co., Greenwich, CT, USA, 2007

31

[14] Goncalves, A.: Beginning Java EE 6 Platform with GlassFish 3: From
Novice to Professional. Apress, Berkely, CA, USA, 1st edn., 2009

[15] Allen, R.B., and Garlan, D.: A formal approach to software architectures.
In Proceedings of the IFIP 12th World Computer Congress on Algorithms,
Software, Architecture - Information Processing. North-Holland Publishing
Co., Amsterdam, The Netherlands, pp. 134-141

[16] Copeland, T.: Generating Parsers with JavaCC. Centennial Books, Alexan-
dria, VA, USA, 2nd edn., 2009

[17] van den Brand, M.G.J., Roubtsov, S.A., and Serebrenik, A.: SQuAVisiT:
A flexible tool for visual software analytics. In A. Winter, R. Ferenc, and
J. Knodel (Eds.) CSMR. IEEE, pp. 331-332

[18] Harold, E.R.: Processing XML with Java. Addison-Wesley Long-
man Publishing Co., Inc., Boston, MA, USA, 2002: URL
http://www.cafeconleche.org/books/xmljava/

[19] Sun Microsystems: Sun Java System Application Server 9.1 Reference Man-
ual, 2007

[20] Jackson, D.: Scalable vector graphics (SVG): the world wide web consor-
tium’s recommendation for high quality web graphics. In ACM SIGGRAPH
2002 conference abstracts and applications, SIGGRAPH ’02. ACM, New
York, NY, USA, pp. 319-319

[21] Savard, M.: Development of OASIS v2. Tech. Rep. CR 2008-
332, Defence Research and Development Canada, Oct. 2008. URL
http://pubs.drdc.gc.ca/PDFS/unc79/p530476.pdf

[22] Oracle: Java RMI over I1IOP. Technol-
ogy Documentation Home Page, 2010. URL
http://docs.oracle.com/javase/1.4.2/docs/guide/rmi-iiop/index.html

[23] Object Management Group: Java to IDL Language Mapping, 2008. Version
1.4

[24] Yawn, M.: J2EE and Jax: Developing Web Applications and Web Services.
Prentice Hall Professional, Upper Saddle River, NJ, USA, 2003

[25] Baldoni, R., Marchetti, C., and Verde, L.: CORBA request portable inter-
ceptors: analysis and applications. Concurrency and Computation: Prac-
tice and Experience, 2003. 15 (6), pp. 551-579

[26] Roubtsov, S.A., Serebrenik, A., and van den Brand, M.G.J.: Detecting
Modularity “Smells” in Dependencies Injected with Java Annotations. In
Software Maintenance and Reengineering, European Conference on. IEEE
Computer Society, Los Alamitos, CA, USA, pp. 244247

[27] Roubtsov, S.A., Serebrenik, A., Mazoyer, A., and van den Brand, M.G.J.:
12SD: Reverse engineering sequence diagrams from Enterprise Java Beans
with interceptors. In SCAM. IEEE, pp. 155-164

32

[28]

[29]

[30]

[39]

Perry, D.E., Porter, A.A., and Votta, L.G.: Empirical studies of software
engineering: a roadmap. In Proceedings of the Conference on The Future
of Software Engineering, ICSE’00. ACM, New York, NY, USA, pp. 345-355

Klaczewski, P., and Wytrebowicz, J.: j2eeprof—a tool for testing multitier
applications. In K. Sacha (Ed.) Software Engineering Techniques: Design
for Quality, SET 2006, October 17-20, 2006, Warsaw, Poland, IFIP, vol.
227. Springer, pp. 199-210

Arthur, J., and Azadegan, S.: Spring framework for rapid open source J2EE
Web application development: a case study. In Software Engineering, Ar-
tificial Intelligence, Networking and Parallel/Distributed Computing, 2005
and First ACIS International Workshop on Self-Assembling Wireless Net-
works. SNPD/SAWN 2005. Sixth International Conference on. pp. 90-95

Rountev, A., and Connell, B.H.: Object naming analysis for reverse-
engineered sequence diagrams. In G.C. Roman, W.G. Griswold, and B. Nu-
seibeh (Eds.) International Conference on Software Engineering. ACM, pp.
254-263

Rountev, A., Volgin, O., and Reddoch, M.: Static control-flow analysis for
reverse engineering of UML sequence diagrams. In M.D. Ernst, and T.P.
Jensen (Eds.) PASTE. ACM, pp. 96-102

Tonella, P., and Potrich, A.: Reverse engineering of the interaction dia-
grams from C++ code. In International Conference on Software Mainte-
nance. IEEE, pp. 159-168

Korshunova, E., Petkovi¢; M., van den Brand, M.G.J., and Mousavi, M.R.:
CPP2XMI: Reverse Engineering of UML Class, Sequence, and Activity
Diagrams from C++ Source Code. In WCRE. IEEE Computer Society,
pp. 297-298

Briand, L.C., Labiche, Y., and Leduc, J.: Toward the reverse engineering
of UML sequence diagrams for distributed Java software. IEEE Trans.
Software Eng., 2006. 32 (9), pp. 642-663

Briand, L.C., Labiche, Y., and Miao, Y.: Towards the reverse engineering
of UML sequence diagrams. In A. van Deursen, E. Stroulia, and M.A.D.
Storey (Eds.) WCRE. IEEE Computer Society, pp. 57-66

Delamare, R., Baudry, B., and Le Traon, Y.: Reverse-engineering of UML
2.0 sequence diagrams from execution traces. In Workshop on Object-
Oriented Reengineering at ECOOP 06. Nantes, France

Guéhéneuc, Y.G., and Ziadi, T.: Automated reverse-engineering of UML
v2.0 dynamic models. In S. Demeyer, S. Ducasse, K. Mens, and R. Wuyts
(Eds.) Proceedings of the 6* ECOOP workshop on Object-Oriented
Reengineering. Springer, Glasgow, UK

Oechsle, R., and Schmitt, T.: JAVAVIS: Automatic program visualization
with object and sequence diagrams using the Java debug interface (JDI). In
S. Diehl (Ed.) Software Visualization, Lecture Notes in Computer Science,
vol. 2269. Springer, pp. 176-190

33

[40]

[41]

[42]

[43]

[47]

[48]

[49]

Richner, T., and Ducasse, S.: Using dynamic information for the iterative
recovery of collaborations and roles. In ICSM. IEEE Computer Society,
pp- 34-43

Bennett, C., Myers, D., Storey, M.A.D., German, D.M., Ouellet, D., Sa-
lois, M., and Charland, P.: A survey and evaluation of tool features for
understanding reverse-engineered sequence diagrams. Journal of Software

Maintenance, 2008. 20 (4), pp. 291-315

Crawford, W., and Kaplan, J.: J2EE Design Patterns. O’Reilly & Asso-
ciates, Inc., Sebastopol, CA, USA, 2003

Dudney, B., Krozak, J., Wittkopf, K., Asbury, S., and Osborne, D.: J2EE
Antipatterns. John Wiley & Sons, New York, NY, USA, 1st edn., 2002

Stephan, M.: Detection of Java EE EJB Antipattern Instances using
Framework-Specific Models. Master’s thesis, University of Waterloo, Wa-
terloo, 04/2009 2009

Antkiewicz, M., Czarnecki, K., and Stephan, M.: Engineering of
framework-specific modeling languages. Software Engineering, IEEE Trans-
actions on, 2009. 35 (6), pp. 795-824

Stein, D., Hanenberg, S., and Unland, R.: Join point designation diagrams:
a graphical representation of join point selections. International Journal of
Software Engineering and Knowledge Engineering, 2006. 16 (3), pp. 317-
346

Deubler, M., Meisinger, M., Rittmann, S., and Kriiger, I.. Modeling
crosscutting services with UML sequence diagrams. In L.C. Briand, and
C. Williams (Eds.) MoDELS, LNCS, vol. 3713. Springer, pp. 522-536

Xu, W. and Xu, D.: A model-based approach to test generation for aspect-
oriented programs. In First Workshop on Testing Aspect-Oriented Pro-
grams. Chicago, IL, USA, pp. 1-6

Sereni, D., and de Moor, O.: Static analysis of aspects. In Proceedings of
the 2nd international conference on Aspect-oriented software development.
ACM, New York, NY, USA, pp. 30-39

Bernardi, M.L., and Di Lucca, G.A.: An interprocedural aspect control
flow graph to support the maintenance of aspect oriented systems. In
International Conference on Software Maintenance. IEEE, pp. 435-444

Schmerl, B.; Aldrich, J., Garlan, D., Kazman, R., and Yan, H.: Discovering
architectures from running systems. Software Engineering, IEEE Transac-
tions on, July 2006. 32 (7), pp. 454-466

Taiani, F., Killijian, M.O., and Fabre, J.C.: COSMOPEN: dynamic re-
verse engineering on a budget. How cheap observation techniques can be
used to reconstruct complex multi-level behaviour. Software: Practice and
Experience, 2009. 39 (18), pp. 1467-1514

34

[53]

[54]

[55]

[56]

Garlan, D., and Shaw, M.: An introduction to software architecture. In
V. Ambriola, and G. Tortora (Eds.) Advances in Software Engineering and
Knowledge Engineering. World Scientific Publishing Company, pp. 1-39

JSR-299 Expert Group: JSR-299: Contexts and Dependency Injection for
the Java EE platform, 2009

Serebrenik, A., and van den Brand, M.G.J.: Theil index for aggregation of
software metrics values. In Int. Conf. Softw. Maint. IEEE, pp. 1-9

Vasilescu, B., Serebrenik, A., and van den Brand, M.G.J.: You can’t control
the unfamiliar: A study on the relations between aggregation techniques
for software metrics. In International Conference on Software Maintenance.
IEEE, pp. 313-322

IBM: EJB 3.x interceptors, 2012. Http://wwwl4.software.ibm.com/
webapp/wsbroker /redirect ?version=matt&product=was-nd-dist
&topic=rejb_3interceptors

35

